205 research outputs found

    Identificación de la Señal Mioeléctrica del Intestino Delgado Registrada en Superficie Externa Abdominal. Comparativa con Registros Internos

    Full text link
    [EN] Intestinal motility is responsible for the functions of segmentation, mixing and transport of the chime poured from the stomach. These functions are of main importance in the processes of nutrients digestion and absorption. Intestinal contractile activity is determined by the myoelectrical activity of intestinal muscular layers. Precisely, intestinal myoelectrical activity, which is also called electroenterogram (EEnG), is the result of two components: a low frequency component (slow wave, SW) that is always present and a high frequency component (spike bursts, SB) which is associated with bowel contractions. Despite of the diagnostic significance of internal recordings of EEnG, clinical application of this technique is limited due to its invasiveness. Thus, surface recording of EEnG could be a solution for non-invasive monitoring of intestinal motility. The aim of this Ph.D. Thesis is the recording of surface electroenterogram and the identification of slow wave and spike bursts activity in order to quantify bowel motor activity in dogs. We conducted simultaneous recordings of IMA in bowel serosa and on abdominal surface of Beagle dogs in fast state. Both signals were analyzed in spectral domain and a frequency band for slow wave and spike bursts energy were determined. Likewise, the effects of abdominal layers and of possible interferences on surface recording of EEnG were also studied. For this purpose it was necessary to define new signal-to-interference and attenuation functions. We calculated different spectral parameters of surface EEnG that quantify presence and intensity of SB taking into consideration the attenuation behavior of abdominal layers and interference effects. These parameters have shown a strong correlation with bowel contractile activity. The research about surface EEnG is complemented with an analysis of signal dynamics throughout the pattern of bowel motor activity in fast state. Stationarity of the signal was evaluated in every period of contractile activity with different window-lengths. The study finishes with the definition of an algorithm that provides a variable window-length, adapting EEnG analysis to the spectral content of signal at every moment. This permits the generation of a fast non-invasive index of bowel contractile activity for future real-time applications. Three main conclusions can be deduced out of the obtained results: - It is possible to identify both bowel’s slow wave and spike bursts activity on surface recordings of EEnG. - Quantification of SB activity on surface EEnG allows non-invasive monitoring of small bowel mechanical activity. - It has been developed a new adaptive analysis method that improves intestinal motility indexes based in traditional techniques as it considers non-stationarity of EEnG.[ES] La motilidad intestinal es responsable de las funciones de segmentación, mezcla y transporte del quimo vertido desde el estómago. Estas funciones son fundamentales en los procesos de digestión y absorción de nutrientes. La actividad contráctil intestinal está determinada por la actividad mioeléctrica de las capas musculares intestinales. Concretamente, la actividad mioeléctrica intestinal, también denominada electroenterograma (EEnG), es el resultado de dos componentes: una componente de baja frecuencia que está siempre presente (onda lenta, OL); y una componente de alta frecuencia (potenciales rápidos de acción o spike bursts, SB) que está asociada directamente a las contracciones intestinales. A pesar del valor diagnóstico de los registros internos del EEnG, su aplicación clínica está limitada debido a su carácter invasivo. Por tanto, el registro en superficie del EEnG podría ser una solución a la monitorización no-invasiva de la motilidad intestinal. El objetivo de la presente tesis doctoral es el registro del electroenterograma de superficie y la identificación de la actividad de la onda lenta y de los spike bursts para la cuantificación no-invasiva de la actividad contráctil intestinal en perros. Se han llevado a cabo registros simultáneos del EEnG en la serosa intestinal y en superficie abdominal de perros Beagle en estado de ayunas. Ambas señales se han analizado en el dominio espectral para la determinación de los rangos de frecuencia en que se localiza la energía tanto de la OL como de los SB. Asimismo se ha estudiado la influencia de las capas abdominales y de posibles interferencias sobre el registro externo. Para ello ha sido necesario definir las funciones señal-interferencia y de atenuación, inéditas hasta la fecha. Teniendo en cuenta estos efectos de atenuación e interferencia, se han calculado distintos parámetros espectrales del EEnG de superficie que cuantifican la existencia e intensidad de SB. Estos parámetros han mostrado una elevada correlación con el grado de actividad contráctil intestinal interno. La investigación sobre el EEnG de superficie se complementa con un análisis de la dinámica de la señal a lo largo del patrón de motilidad intestinal en ayunas. Se ha valorado el grado de estacionariedad de la señal en cada estado de actividad contráctil para distintos anchos de ventana. El estudio finaliza con la definición de un algoritmo que proporciona un ancho de ventana variable, adaptando el análisis del EEnG al contenido espectral de la señal en cada momento. Esto permite generar un indicador no-invasivo de actividad contráctil intestinal, rápido de obtener, para futuras aplicaciones en tiempo real. De los resultados obtenidos se extraen tres conclusiones fundamentales: - Es posible identificar tanto la actividad de la onda lenta intestinal como la actividad de los potenciales rápidos de acción (SB) en el registro del EEnG de superficie. - La cuantificación de la actividad de los SB del EEnG de superficie permite la monitorización no invasiva de la actividad mecánica del intestino delgado. - Se ha desarrollado un método de análisis adaptativo que mejora los índices de motilidad intestinal basado en técnicas tradicionales, ya que tiene en cuenta la no estacionariedad del EEnG.[CA] La motilitat intestinal és responsable de les funcions de segmentació, mixtió i transport del quimo abocat des de l'estómac. Aquestes funcions són fonamentals en els processos de digestió i absorció de nutrients. L'activitat contràctil intestinal està determinada per l'activitat mioelèctrica de les capes musculars intestinals. Concretament, l'activitat mioelèctrica intestinal, també denominada electroenterograma (EEnG), és el resultat de dos components: una component de baixa freqüència que està sempre present (ona lenta, OL); i una component d'alta freqüència (potencials ràpids d'acció o spike bursts, SB) que està associada directament a les contraccions intestinals. A pesar del valor diagnòstic dels registres interns del EEnG, la seva aplicació clínica està limitada a causa de el seu caràcter invasiu. Per tant, el registre en superfície del EEnG podria ser una solució al monitoratge no-invasiu de la motilitat intestinal. L'objectiu de la present tesi doctoral és el registre de l’electroenterograma de superfície i la identificació de l'activitat de l'ona lenta i dels spike bursts per a la quantificació no-invasiva de l'activitat contràctil intestinal en gos. S'han portat a terme registres simultanis del EEnG en la serosa intestinal i en superfície abdominal de gossos Beagle en estat de dejunes. Ambdues senyals s'han analitzat en el domini espectral per a la determinació dels rangs de freqüència on es localitza l'energia tant de la OL com dels SB. Així mateix s'ha estudiat la influència de les capes abdominals i de possibles interferències sobre el registre extern. Per a això ha estat necessari desenvolupar les funcions senyal-interferència i d'atenuació inèdites fins a la data. Tenint en compte aquests efectes d'atenuació i interferència, s'han definit distints paràmetres espectrals del EEnG de superfície que quantifiquen l'existència i intensitat de SB. Aquests paràmetres han mostrat una elevada correlació amb el grau d'activitat contràctil intestinal intern. La investigació sobre el EEnG de superfície es completa amb una anàlisi de la dinàmica del senyal al llarg del patró de motilitat intestinal en dejú. S'ha valorat el grau de estacionarietat del senyal en cada estat d'activitat contràctil per a distints amples de finestra. L'estudi finalitza amb la definició d'un algorisme que proporciona un ample de finestra variable, adaptant l'anàlisi del EEnG al contingut espectral del senyal a cada moment. Això permet generar un indicador no-invasiu d'activitat contràctil intestinal, ràpid d'obtenir, per a futures aplicacions en temps real. Els resultats obtinguts permeten extreure tres conclusions fonamentals: - És possible identificar tant l'activitat de l'ona lenta intestinal com l'activitat dels potencials ràpids d’acció (SB) en el registre del EEnG de superfície. - La quantificació de l'activitat dels SB del EEnG de superfície permet el monitoratge no invasiu de l'activitat mecànica de l'intestí prim. - S'ha desenvolupat un mètode d'anàlisi adaptatiu que millora els índexs de motilitat intestinal basat en tècniques tradicionals, ja que té en compte la no-estacionarietat del EEnG.Garcia Casado, FJ. (2005). Identificación de la Señal Mioeléctrica del Intestino Delgado Registrada en Superficie Externa Abdominal. Comparativa con Registros Internos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/135956TESI

    Evaluation of Bipolar, Tripolar, and Quadripolar Laplacian Estimates of Electrocardiogram via Concentric Ring Electrodes

    Full text link
    [EN] Surface Laplacian estimates via concentric ring electrodes (CREs) have proven to enhance spatial resolution compared to conventional disc electrodes, which is of great importance for P-wave analysis. In this study, Laplacian estimates for traditional bipolar configuration (BC), two tripolar configurations with linearly decreasing and increasing inter-ring distances (TCLDIRD and TCLIIRD, respectively), and quadripolar configuration (QC) were obtained from cardiac recordings with pentapolar CREs placed at CMV1 and CMV2 positions. Normalized P-wave amplitude (NAP) was computed to assess the contrast to study atrial activity. Signals were of good quality (20-30 dB). Atrial activity was more emphasized at CMV1 (NAP similar or equal to 0.19-0.24) compared to CMV2 (NAP similar or equal to 0.08-0.10). Enhanced spatial resolution of TCLIIRD and QC resulted in higher NAP values than BC and TCLDIRD. Comparison with simultaneous standard 12-lead ECG proved that Laplacian estimates at CMV1 outperformed all the limb and chest standard leads in the contrast to study P-waves. Clinical recordings with CRE at this position could allow more detailed observation of atrial activity and facilitate the diagnosis of associated pathologies. Furthermore, such recordings would not require additional electrodes on limbs and could be performed wirelessly, so it should also be suitable for ambulatory monitoring, for example, using cardiac Holter monitors.This research was funded by the National Science Foundation (NSF) Division of Human Resource Development (HRD) Tribal Colleges and Universities Program (TCUP), grants number 1622481 and 1914787 to O.M.Garcia-Casado, J.; Ye Lin, Y.; Prats-Boluda, G.; Makeyev, O. (2019). Evaluation of Bipolar, Tripolar, and Quadripolar Laplacian Estimates of Electrocardiogram via Concentric Ring Electrodes. Sensors. 19(17):1-11. https://doi.org/10.3390/s19173780S1111917Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., … Alam, K. (2017). Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1-25. doi:10.1016/j.jacc.2017.04.052Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. The Lancet, 367(9524), 1747-1757. doi:10.1016/s0140-6736(06)68770-9Bhatnagar, P., Wickramasinghe, K., Wilkins, E., & Townsend, N. (2016). Trends in the epidemiology of cardiovascular disease in the UK. Heart, 102(24), 1945-1952. doi:10.1136/heartjnl-2016-309573https://healthmetrics.heart.org/cardiovascular-disease-a-costly-burden/Leal, J., Luengo-Fernández, R., Gray, A., Petersen, S., & Rayner, M. (2006). Economic burden of cardiovascular diseases in the enlarged European Union. European Heart Journal, 27(13), 1610-1619. doi:10.1093/eurheartj/ehi733Wang, Y., Cuculich, P. S., Zhang, J., Desouza, K. A., Vijayakumar, R., Chen, J., … Rudy, Y. (2011). Noninvasive Electroanatomic Mapping of Human Ventricular Arrhythmias with Electrocardiographic Imaging. Science Translational Medicine, 3(98), 98ra84-98ra84. doi:10.1126/scitranslmed.3002152SippensGroenewegen, A., Peeters, H. A. P., Jessurun, E. R., Linnenbank, A. C., Robles de Medina, E. O., Lesh, M. D., & van Hemel, N. M. (1998). Body Surface Mapping During Pacing at Multiple Sites in the Human Atrium. Circulation, 97(4), 369-380. doi:10.1161/01.cir.97.4.369Kornreich, F., MacLeod, R. S., & Lux, R. L. (2008). Supplemented standard 12-lead electrocardiogram for optimal diagnosis and reconstruction of significant body surface map patterns. Journal of Electrocardiology, 41(3), 251-256. doi:10.1016/j.jelectrocard.2008.02.011Fereniec, M., Stix, G., Kania, M., Mroczka, T., & Maniewski, R. (2013). An Analysis of the U-Wave and Its Relation to the T-Wave in Body Surface Potential Maps for Healthy Subjects and MI Patients. Annals of Noninvasive Electrocardiology, 19(2), 145-156. doi:10.1111/anec.12110Lian, J., Li, G., Cheng, J., Avitall, B., & He, B. (2002). Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Medical & Biological Engineering & Computing, 40(6), 650-659. doi:10.1007/bf02345304Wu, D., Tsai, H. C., & He, B. (1999). On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering, 27(6), 731-745. doi:10.1114/1.224He, B., & Cohen, R. J. (1992). Body surface Laplacian mapping of cardiac electrical activity. The American Journal of Cardiology, 70(20), 1617-1620. doi:10.1016/0002-9149(92)90471-aHe, B., & Cohen, R. J. (1992). Body surface Laplacian ECG mapping. IEEE Transactions on Biomedical Engineering, 39(11), 1179-1191. doi:10.1109/10.168684He, B., & Cohen, R. J. (1995). Body Surface Laplacian Electrocardiographic Mapping−A Review. Critical Reviews in Biomedical Engineering, 23(5-6), 475-510. doi:10.1615/critrevbiomedeng.v23.i5-6.30UMETANI, K., OKAMOTO, Y., MASHIMA, S., ONO, K., HOSAKA, H., & HE, B. (1998). Body Surface Laplacian Mapping in Patients with Left or Right Ventricular Bundle Branch Block. Pacing and Clinical Electrophysiology, 21(11), 2043-2054. doi:10.1111/j.1540-8159.1998.tb01122.xBin He, Guanglin Li, & Jie Lian. (2002). A spline Laplacian ECG estimator in a realistic geometry volume conductor. IEEE Transactions on Biomedical Engineering, 49(2), 110-117. doi:10.1109/10.979350Besio, G., Koka, K., Aakula, R., & Weizhong Dai. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926-933. doi:10.1109/tbme.2005.863887Besio, W., Aakula, R., Koka, K., & Dai, W. (2006). Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials. Annals of Biomedical Engineering, 34(3), 426-435. doi:10.1007/s10439-005-9054-8Besio, W., & Chen, T. (2007). Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiological Measurement, 28(5), 515-529. doi:10.1088/0967-3334/28/5/006Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ye-Lin, Y. (2011). Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Medical Engineering & Physics, 33(4), 446-455. doi:10.1016/j.medengphy.2010.11.009Prats-Boluda, G., Ye-Lin, Y., Bueno-Barrachina, J., Rodriguez de Sanabria, R., & Garcia-Casado, J. (2016). Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position. Measurement Science and Technology, 27(2), 025705. doi:10.1088/0957-0233/27/2/025705Zena-Giménez, V., Garcia-Casado, J., Ye-Lin, Y., Garcia-Breijo, E., & Prats-Boluda, G. (2018). A Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow Waves. Sensors, 18(2), 396. doi:10.3390/s18020396Ye-Lin, Y., Alberola-Rubio, J., Prats-boluda, G., Perales, A., Desantes, D., & Garcia-Casado, J. (2014). Feasibility and Analysis of Bipolar Concentric Recording of Electrohysterogram with Flexible Active Electrode. Annals of Biomedical Engineering, 43(4), 968-976. doi:10.1007/s10439-014-1130-5Wang, K., Parekh, U., Pailla, T., Garudadri, H., Gilja, V., & Ng, T. N. (2017). Stretchable Dry Electrodes with Concentric Ring Geometry for Enhancing Spatial Resolution in Electrophysiology. Advanced Healthcare Materials, 6(19), 1700552. doi:10.1002/adhm.201700552Lidón-Roger, J., Prats-Boluda, G., Ye-Lin, Y., Garcia-Casado, J., & Garcia-Breijo, E. (2018). Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology. Sensors, 18(1), 300. doi:10.3390/s18010300Makeyev, O., Ding, Q., & Besio, W. G. (2016). Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes. Measurement, 80, 44-52. doi:10.1016/j.measurement.2015.11.017Makeyev, O., & Besio, W. (2016). Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes. Sensors, 16(6), 858. doi:10.3390/s16060858Makeyev, O. (2018). Solving the general inter-ring distances optimization problem for concentric ring electrodes to improve Laplacian estimation. BioMedical Engineering OnLine, 17(1). doi:10.1186/s12938-018-0549-6Ye-Lin, Y., Bueno-Barrachina, J. M., Prats-boluda, G., Rodriguez de Sanabria, R., & Garcia-Casado, J. (2017). Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement, 97, 195-202. doi:10.1016/j.measurement.2016.11.009Prats-Boluda, G., Ye-Lin, Y., Pradas-Novella, F., Garcia-Breijo, E., & Garcia-Casado, J. (2018). Textile Concentric Ring Electrodes: Influence of Position and Electrode Size on Cardiac Activity Monitoring. Journal of Sensors, 2018, 1-9. doi:10.1155/2018/7290867Huiskamp, G. (1991). Difference formulas for the surface Laplacian on a triangulated surface. Journal of Computational Physics, 95(2), 477-496. doi:10.1016/0021-9991(91)90286-tHamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157-1165. doi:10.1109/tbme.1986.325695Koka, K., & Besio, W. G. (2007). Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. Journal of Neuroscience Methods, 165(2), 216-222. doi:10.1016/j.jneumeth.2007.06.007Prats-Boluda, G., Ye-Lin, Y., Bueno Barrachina, J. M., Senent, E., Rodriguez de Sanabria, R., & Garcia-Casado, J. (2015). Development of a portable wireless system for bipolar concentric ECG recording. Measurement Science and Technology, 26(7), 075102. doi:10.1088/0957-0233/26/7/07510

    A Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow Waves

    Full text link
    [EN] Developing new types of optimized electrodes for specific biomedical applications can substantially improve the quality of the sensed signals. Concentric ring electrodes have been shown to provide enhanced spatial resolution to that of conventional disc electrodes. A sensor with different electrode sizes and configurations (monopolar, bipolar, etc.) that provides simultaneous records would be very helpful for studying the best signal-sensing arrangement. A 5-pole electrode with an inner disc and four concentric rings of different sizes was developed and tested on surface intestinal myoelectrical recordings from healthy humans. For good adaptation to a curved body surface, the electrode was screen-printed onto a flexible polyester substrate. To facilitate clinical use, it is self-adhesive, incorporates a single connector and can perform dry or wet (with gel) recordings. The results show it to be a versatile electrode that can evaluate the optimal configuration for the identification of the intestinal slow wave and reject undesired interference. A bipolar concentric record with an outer ring diameter of 30 mm, a foam-free adhesive material, and electrolytic gel gave the best results.Grant from the Ministerio de Economia y Competitividad y del Fondo Europeo de Desarrollo Regional. DPI2015-68397-R (MINECO/FEDER).Zena-Giménez, VF.; Garcia Casado, FJ.; Ye Lin, Y.; Garcia-Breijo, E.; Prats-Boluda, G. (2018). A Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow Waves. Sensors. 18(2):396-412. https://doi.org/10.3390/s18020396S39641218

    Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

    Full text link
    [EN] Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT: PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT: PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT: PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT: PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.Grant from the Ministerio de Economia y Competitividad y del Fondo Europeo de Desarrollo Regional. DPI2015-68397-R (MINECO/FEDER). This work was also supported by the Spanish Government/FEDER funds (grant number MAT2015-64139-C4-3-R (MINECO/FEDER)).Lidon-Roger, JV.; Prats-Boluda, G.; Ye Lin, Y.; Garcia Casado, FJ.; Garcia-Breijo, E. (2018). Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology. Sensors. 18(1):300-314. https://doi.org/10.3390/s18010300S30031418

    Enhancement of Non-Invasive Recording of Electroenterogram by Means of a Flexible Array of Concentric Ring Electrodes

    Full text link
    Monitoring intestinal myoelectrical activity by electroenterogram (EEnG) would be of great clinical interest for diagnosing gastrointestinal pathologies and disorders. However, surface EEnG recordings are of very low amplitude and can be severely affected by baseline drifts and respiratory and electrocardiographic (ECG) interference. In this work, a flexible array of concentric ring electrodes was developed and tested to determine whether it can provide surface EEnG signals of better quality than bipolar recordings from conventional disc electrodes. With this aime, sixteen healthy subjects in a fasting state (>8h) underwent recording. The capabiltiy of detecting intestinal pacemaker activity (slow wave) and the influence of physiological interferences were studied. The signals obtained from the concentric ring electrodes proved to be more robust to ECG and respiratory interference than those from conventional disc electrodes. The results also show that intestinal EEnG components such as the slow wave can be more easily identified by the proposed system based on a flexible array of concentric ring electrodes. The developed active electrode array could be a very valuable tool for non-invasive diagnosis of disease states such as ischemia and motility disorders of the small bowel which are known to alter the normal enteric slow wave activity.Research supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC 2010-16945). The proof-reading of this paper was funded by the Universitat Politecnica de Valencia, Spain.Garcia Casado, FJ.; Zena Giménez, VF.; Prats Boluda, G.; Ye Lin, Y. (2014). Enhancement of Non-Invasive Recording of Electroenterogram by Means of a Flexible Array of Concentric Ring Electrodes. Annals of Biomedical Engineering. 42(3):651-660. https://doi.org/10.1007/s10439-013-0935-yS651660423Abo, M., J. Liang, L. Qian, and J. D. Chen. Distension-induced myoelectrical dysrhythmia and effect of intestinal pacing in dogs. Dig. Dis. Sci. 45(1):129–135, 2000.Besio, W., R. Aakula, K. Koka, and W. Dai. Development of a tri-polar concentric ring electrode for acquiring accurate Laplacian body surface potentials. Ann. Biomed. Eng. 34(3):426–435, 2006.Besio, W., and T. Chen. Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiol. Meas. 28(5):515–529, 2007.Bradshaw, L. A., S. H. Allos, J. P. Wikswo, Jr, and W. O. Richards. Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am. J. Physiol. 272(5 Pt 1):G1159–G1167, 1997.Bradshaw, L. A., J. K. Ladipo, D. J. Staton, J. P. Wikswo, Jr, and W. O. Richards. The human vector magnetogastrogram and magnetoenterogram. IEEE Trans. Biomed. Eng. 46(8):959–970, 1999.Bradshaw, L. A., W. O. Richards, and J. P. Wikswo, Jr. Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Med. Biol. Eng Comput. 39(1):35–43, 2001.Caenepeel, P., W. Janssens, A. Accarino, J. Janssens, G. Vantrappen, and H. Eyssen. Variation of slow-wave frequency and locking during the migrating myoelectric complex in dogs. Am. J. Physiol. 261(6):G1079–G1084, 1991.Chang, F. Y., C.-L. Lu, C.-Y. Chen, J.-C. Luo, S.-D. Lee, H.-C. Wu, and J. D. Z. Chen. Fasting and postprandial small intestinal slow waves non-invasively measured in subjects with total gastrectomy. Gastroenterology 22:247–252, 2006.Chen, J. D. Z. Non-invasive measurement of gastric myoelectrical activity and its analysis and applications. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, 1998, pp. 2802–2807.Chen, J. D. Z., D. Schirmer, and R. W. McCallum. Measurement of electric activity of the human small intestine using surface electrodes. IEEE Trans. Biomed. Eng. 40(6):598–602, 1993.Clifton, J. A., J. Christensen, and H. P. Schedl. The human small intestinal slow wave. Trans. Am. Clin. Climatol. Assoc. 77:217–225, 1966.Feltane, A., G. F. Boudreaux-Bartels, and W. Besio. Automatic seizure detection in rats using Laplacian EEG and verification with human seizure signals. Ann. Biomed. Eng. 41(3):645–654, 2013.Fleckenstein, P., and A. Oigaard. Electrical spike activity in the human small intestine. A multiple electrode study of fasting diurnal variations. Am. J. Dig. Dis. 23(9):776–780, 1978.Garcia-Casado, J., J. L. Martinez-de-Juan, and J. L. Ponce. Noninvasive measurement and analysis of intestinal myoelectrical activity using surface electrodes. IEEE Trans. Biomed. Eng. 52(6):983–991, 2005.Garcia-Casado, J., J. L. Martinez-de-Juan, and J. L. Ponce. Adaptive filtering of ECG interference on surface EEnGs based on signal averaging. Physiol. Meas. 27(6):509–527, 2006.Gruetzmann, A., S. Hansen, and J. Muller. Novel dry electrodes for ECG monitoring. Physiol. Meas. 28(11):1375–1390, 2007.He, B., and R. J. Cohen. Body surface Laplacian mapping of cardiac electrical activity. Am. J. Cardiol. 70(20):1617–1620, 1992.Koka, K., and W. G. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165(2):216–222, 2007.Lammers, W. J., H. M. Al-Bloushi, S. A. Al-Eisae, F. A. Al-Dhaheri, B. Stephen, R. John, S. Dhanasekaran, and M. Karam. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic. Exp. Physiol. 96:1039–1048, 2011.Li, G., Y. Wang, W. Jiang, L. L. Wang, C.-Y. S. Lu, and W. G. Besio. Active Laplacian electrode for the data-acquisition system of EHG. J. Phys: Conf. Ser. 13:330–335, 2005.Li, G. L., J. Lian, P. Salla, J. Cheng, I. Ramachandra, P. Shah, B. Avitall, and B. He. Body surface Laplacian electrocardiogram of ventricular depolarization in normal human subjects. J. Cardiovasc. Electrophysiol. 14(1):16–27, 2003.Lian, J., G. Li, J. Cheng, B. Avitall, and B. He. Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Med. Biol. Eng Comput. 40(6):650–659, 2002.Lin, Z. Y., and J. D. Z. Chen. Recursive running DCT algorithm and its application in adaptive filtering of surface electrical recording of small-intestine. Med. Biol. Eng. Comput. 32(3):317–322, 1994.Lindh, W. Q., M. Pooler, C. D. Tamparo, B. M. Dahl, and J. Morris. Delmar’s Comprehensive Medical Assisting: Administrative and Clinical Competencies. Clifton Park, NY: Delmar Cengage Learning, p. 573, 2009.Madl, C., and W. Druml. Gastrointestinal disorders of the critically ill. Systemic consequences of ileus. Best. Pract. Res. Clin. Gastroenterol. 17(3):445–456, 2003.Merletti, R. Standards for reporting EMG data. J. Electromyography Kinesiol. 9(1):III–IV, 1999.Morrison, P., B. W. Miedema, L. Kohler, and K. A. Kelly. Electrical rysrhythmias in the Roux jejunal limb—cause and treatment. Am. J. Surg. 160(3):252–256, 1990.Park, H. The pathophysiology of irritable bowel syndrome: inflammation and motor disorder. Korean J. Gastroenterol. 47(2):101–110, 2006.Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and J. L. Ponce. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans. Physiol. Meas. 28(9):1115–1133, 2007.Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 33(4):446–455, 2011.Prats-Boluda, G., Y. Ye-Lin, E. Garcia-Breijó, J. Ibañez, and J. Garcia-Casado. Active flexible concentric ring electrode for noninvasive surface bioelectrical recordings. Meas. Sci. Technol. 23(125703):1–10, 2012.Saito, Y. A., P. R. Strege, D. J. Tester, G. R. Locke, N. J. Talley, C. E. Bernard, J. L. Rae, J. C. Makielski, M. J. Ackerman, and G. Farrugia. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 296(2):G211–G218, 2009.Shafik, A., A. A. Shafik, O. El Sibai, and I. Ahmed. Colonic pacing in patients with constipation due to colonic inertia. Med. Sci. Monit. 9(5):191–196, 2003.Somarajan, S., S. Cassilly, C. Obioha, L. Bradshaw, and W. Richards. Noninvasive biomagnetic detection of isolated ischemic bowel segments. IEEE Trans. Biomed. Eng. 60(6):1677–1684, 2013.Soundararajan, V., and W. Besio. Simulated comparison of disc and concentric electrode maps during atrial arrhythmias. Int. J. Bioelectromagn 7(1):217–220, 2005.Summers, R. W., S. Anuras, and J. Green. Jejunal manometry patterns in health, partial intestinal obstruction, and pseudoobstruction. Gastroenterology 85(6):1290–1300, 1983.Webster, J. G., J. W. Clark, Jr., M. R. Neuman, W. H. Olson, R. A. Peura, F. P. J. Primiano, M. P. Siedband, and L. A. Wheeler. Medical Instrumentation Application and Design. NewYork: Wiley, 1998.Weisbrodt, N. W. Motility of the small intestine. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven Press, 1987, pp. 631–663.Wu, D., H. C. Tsai, and B. He. On the estimation of the Laplacian electrocardiogram during ventricular activation. Ann. Biomed. Eng. 27(6):731–745, 1999.Ye-Lin, Y., J. Garcia-Casado, J. L. Martinez-de-Juan, G. Prats-Boluda, and J. L. Ponce. The detection of intestinal spike activity on surface electroenterograms. Phys. Med. Biol. 55(3):663–680, 2010.Ye-Lin, Y., J. Garcia-Casado, G. Prats-Boluda, J. L. Ponce, and J. L. Martinez-de-Juan. Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiol. Meas. 30(9):885–902, 2009

    Uterine contractile efficiency indexes for labor prediction: a bivariate approach from multichannel electrohysterographic records

    Full text link
    [EN] Labor prediction is one of the most challenging goals in obstetrics, mainly due to the poor understanding of the factors responsible for the onset of labor. The electrohysterogram (EHG) is the recording of the myoelectrical activity of myometrial cells and has been shown to provide relevant information on the electrophysiological state of the uterus. This information could be used to obtain more accurate labor predictions than those of the currently used techniques, such as the Bishop score, tocography or biochemical markers. Indeed, a number of efforts have already been made to predict labor by this method, separately characterizing the intensity, the coupling degree of the EHG signals and myometrial cell excitability, these being the cornerstones on which contraction efficiency is built. Although EHG characterization can distinguish between different obstetric situations, the reported results have not been shown to provide a practical tool for the clinical detection of true labor. The aim of this work was thus to define and calculate indexes from multichannel EHG recordings related to all the phenomena involved in the efficiency of uterine myoelectrical activity (intensity, excitability and synchronization) and to combine them to form global efficiency indexes (GEI) able to predict delivery in less than 7/14 days. Four EHG synchronization indexes were assessed: linear correlation, the imaginary part of the coherence, phase synchronization and permutation cross mutual information. The results show that even though the synchronization and excitability efficiency indexes can detect increasing trends as labor approaches, they cannot predict labor in less than 7/14 days. However, intensity seems to be the main factor that contributes to myometrial efficiency and is able to predict labor in less than 7/14 days. All the GEls present increasing monotonic trends as pregnancy advances and are able to identify (p < 0.05) patients who will deliver in less than 7/14 days better than single channel and single phenomenon parameters. The GEI based on the permutation cross mutual information shows especially promising results. A simplified EHG recording protocol is proposed here for clinical practice, capable of predicting deliveries in less than 7/14 days, consisting of 4 electrodes vertically aligned with the median line of the uterus. (C) 2018 Elsevier Ltd. All rights reserved.The authors are grateful to Zhenhu Liang, of the Yanshan University, who provided essential information for computing the PLV and NPCMI synchronization indexes. This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (DPI2015-68397-R, MINECO/FEDER).Mas-Cabo, J.; Ye Lin, Y.; Garcia-Casado, J.; Alberola Rubio, J.; Perales Marín, AJ.; Prats-Boluda, G. (2018). Uterine contractile efficiency indexes for labor prediction: a bivariate approach from multichannel electrohysterographic records. Biomedical Signal Processing and Control. 46:238-248. https://doi.org/10.1016/j.bspc.2018.07.018S2382484

    Electrohysterography in the diagnosis of preterm birth: a review

    Full text link
    This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at http://doi.org/10.1088/1361-6579/aaad56.[EN] Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 15 million preterm neonates are born every year, with ratios of 10-15% of total births. In industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and the underlying physiological mechanisms are unclear. Surface recording of the uterine myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics monitoring technique than traditional surface pressure recordings and provides information on the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting preterm deliveries. Objective: A comprehensive review of the literature was performed on studies related to the use of the electrohysterogram in the PTB context. Approach: This review presents and discusses the results according to the different types of parameter (temporal and spectral, non-linear and bivariate) used for EHG characterization. Main results: Electrohysterogram analysis reveals that the uterine electrophysiological changes that precede spontaneous preterm labor are associated with contractions of more intensity, higher frequency content, faster and more organized propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-linear and bivariate EHG analyses therefore provide useful and complementary information. Classificatory techniques of different types and varying complexity have been developed to diagnose PTB. The information derived from these different types of EHG parameters, either individually or in combination, is able to provide more accurate predictions of PTB than current clinical methods. However, in order to extend EHG to clinical applications, the recording set-up should be simplified, be less intrusive and more robust-and signal analysis should be automated without requiring much supervision and yield physiologically interpretable results. Significance: This review provides a general background to PTB and describes how EHG can be used to better understand its underlying physiological mechanisms and improve its prediction. The findings will help future research workers to decide the most appropriate EHG features to be used in their analyses and facilitate future clinical EHG applications in order to improve PTB prediction.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under grant DPI2015-68397-R.Garcia-Casado, J.; Ye Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola Rubio, J.; Perales Marin, AJ. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement. 39(2). https://doi.org/10.1088/1361-6579/aaad56S39

    Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records

    Full text link
    [EN] Preterm labor is one of the major causes of neonatal deaths and also the cause of significant health and development impairments in those who survive. However, there are still no reliable and accurate tools for preterm labor prediction in clinical settings. Electrohysterography (EHG) has been proven to provide relevant information on the labor time horizon. Many studies focused on predicting preterm labor by using temporal, spectral, and nonlinear parameters extracted from single EHG recordings. However, multichannel analysis, which includes information from the whole uterus and about coupling between the recording areas, may provide better results. The cross validation method is often used to design classifiers and evaluate their performance. However, when the validation dataset is used to tune the classifier hyperparameters, the performance metrics of this dataset may not properly assess its generalization capacity. In this work, we developed and compared different classifiers, based on artificial neural networks, for predicting preterm labor using EHG features from single and multichannel recordings. A set of temporal, spectral, nonlinear, and synchronization parameters computed from EHG recordings was used as the input features. All the classifiers were evaluated on independent test datasets, which were never ¿seen¿ by the models, to determine their generalization capacity. Classifiers¿ performance was also evaluated when obstetrical data were included. The experimental results show that the classifier performance metrics were significantly lower in the test dataset (AUC range 76-91%) than in the train and validation sets (AUC range 90-99%). The multichannel classifiers outperformed the single-channel classifiers, especially when information was combined into mean efficiency indexes and included coupling information between channels. Including obstetrical data slightly improved the classifier metrics and reached an AUC of for the test dataset. These results show promise for the transfer of the EHG technique to preterm labor prediction in clinical practice.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (DPI2015-68397-R, MINECO/FEDER, and RTI2018-094449-A-I00-AR); Generalitat Valenciana (AICO/2019/220); and the VLC/Campus (UPV-FE-2018-B03).Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Perales Marín, AJ.; Ye Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors. 2019:1-13. https://doi.org/10.1155/2019/5373810S1132019Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281Fitzpatrick, K., Tuffnell, D., Kurinczuk, J., & Knight, M. (2016). Pregnancy at very advanced maternal age: a UK population-based cohort study. BJOG: An International Journal of Obstetrics & Gynaecology, 124(7), 1097-1106. doi:10.1111/1471-0528.14269Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery &ndash; current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048Garfield, R. E., Maner, W. L., Maul, H., & Saade, G. R. (2005). Use of uterine EMG and cervical LIF in monitoring pregnant patients. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 103-108. doi:10.1111/j.1471-0528.2005.00596.xDevedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fuchs, A.-R., Fuchs, F., Husslein, P., & Soloff, M. S. (1984). Oxytocin receptors in the human uterus during pregnancy and parturition. American Journal of Obstetrics and Gynecology, 150(6), 734-741. doi:10.1016/0002-9378(84)90677-xTezuka, N., Ali, M., Chwalisz, K., & Garfield, R. E. (1995). Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. American Journal of Physiology-Cell Physiology, 269(4), C1008-C1017. doi:10.1152/ajpcell.1995.269.4.c1008Honest, H., Bachmann, L., Sundaram, R., Gupta, J., Kleijnen, J., & Khan, K. (2004). The accuracy of risk scores in predicting preterm birth—a systematic review. Journal of Obstetrics and Gynaecology, 24(4), 343-359. doi:10.1080/01443610410001685439Garfield, R. E., & Hayashi, R. H. (1981). Appearance of gap junctions in the myometrium of women during labor. American Journal of Obstetrics and Gynecology, 140(3), 254-260. doi:10.1016/0002-9378(81)90270-2Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yDiab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228.e1-228.e10. doi:10.1016/j.ajog.2010.09.024Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016Maul, H., Maner, W., Olson, G., Saade, G., & Garfield, R. (2004). Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. The Journal of Maternal-Fetal & Neonatal Medicine, 15(5), 297-301. doi:10.1080/14767050410001695301Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yGarfield, R. E., & Maner, W. L. (2007). Physiology and electrical activity of uterine contractions. Seminars in Cell & Developmental Biology, 18(3), 289-295. doi:10.1016/j.semcdb.2007.05.004Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. doi:10.1109/10.959330Cui, D., Pu, W., Liu, J., Bian, Z., Li, Q., Wang, L., & Gu, G. (2016). A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information. Neural Networks, 82, 30-38. doi:10.1016/j.neunet.2016.06.004Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Bottou, L. (2012). Stochastic Gradient Descent Tricks. Neural Networks: Tricks of the Trade, 421-436. doi:10.1007/978-3-642-35289-8_25Lim, K., Butt, K., & Crane, J. M. (2018). No. 257-Ultrasonographic Cervical Length Assessment in Predicting Preterm Birth in Singleton Pregnancies. Journal of Obstetrics and Gynaecology Canada, 40(2), e151-e164. doi:10.1016/j.jogc.2017.11.01

    Assessment of haemophilic arthropathy through balance analysis: a promising tool

    Full text link
    This is an Author's Accepted Manuscript of an article published in Xavier García-Massó, Yiyao Ye-Lin, Javier Garcia-Casado, Felipe Querol & Luis-Millan Gonzalez (2019) Assessment of haemophilic arthropathy through balance analysis: a promising tool, Computer Methods in Biomechanics and Biomedical Engineering, 22:4, 418-425, DOI: 10.1080/10255842.2018.1561877, available online at: http://doi.org/10.1080/10255842.2018.1561877.[EN] The purpose of this study was to develop a tool able to distinguish between subjects who have haemophilic arthropathy in lower limbs and those who do not by analyzing the centre of pressure displacement. The second objective was to assess the possible different responses of haemophiliacs and healthy subjects by creating a classifier that could distinguish between both groups. Fiftyfour haemophilic patients (28 with and 26 without arthropathy) and 23 healthy subjects took part voluntarily in the study. A force plate was used to measure postural stability. A total of 276 centre of pressure displacement parameters were calculated under different conditions: unipedal/bipedal balance with eyes open/closed. These parameters were used to design a Quadratic Discriminant Analysis classifier. The arthropathy versus non-arthropathy classifier had an overall accuracy of 97.5% when only 10 features were used in its design. Similarly, the haemophiliac versus nonhaemophiliac classifier had an overall accuracy of 97.2% when only 7 features were used. In conclusion, an objective haemophilic arthropathy in lower limbs evaluation system was developed by analyzing centre of pressure displacement signals. The haemophiliac vs. non-haemophiliac classifier designed was also able to corroborate the existing differences in postural control between haemophilic patients (with and without arthropathy) and healthy subjects.García-Massó, X.; Ye Lin, Y.; Garcia-Casado, J.; Querol -Fuentes, F.; Gonzalez, L. (2019). Assessment of haemophilic arthropathy through balance analysis: a promising tool. Computer Methods in Biomechanics & Biomedical Engineering. 22(4):418-425. https://doi.org/10.1080/10255842.2018.1561877S418425224Amoud, H., Abadi, M., Hewson, D. J., Michel-Pellegrino, V., Doussot, M., & Duchêne, J. (2007). Fractal time series analysis of postural stability in elderly and control subjects. Journal of NeuroEngineering and Rehabilitation, 4(1), 12. doi:10.1186/1743-0003-4-12AZNAR, J. A., ABAD-FRANCH, L., CORTINA, V. R., & MARCO, P. (2009). The national registry of haemophilia A and B in Spain: results from a census of patients. Haemophilia, 15(6), 1327-1330. doi:10.1111/j.1365-2516.2009.02101.xCabeza-Ruiz, R., García-Massó, X., Centeno-Prada, R. A., Beas-Jiménez, J. D., Colado, J. C., & González, L.-M. (2011). Time and frequency analysis of the static balance in young adults with Down syndrome. Gait & Posture, 33(1), 23-28. doi:10.1016/j.gaitpost.2010.09.014Cruz-Montecinos, C., De la Fuente, C., Rivera-Lillo, G., Morales-Castillo, S., Soto-Arellano, V., Querol, F., & Pérez-Alenda, S. (2017). Sensory strategies of postural sway during quiet stance in patients with haemophilic arthropathy. Haemophilia, 23(5), e419-e426. doi:10.1111/hae.13297De SOUZA, F. M. B., PEREIRA, R. P., MINUQUE, N. P., Do CARMO, C. M., De MELLO, M. H. M., VILLAÇA, P., & TANAKA, C. (2012). Postural adjustment after an unexpected perturbation in children with haemophilia. Haemophilia, 18(3), e311-e315. doi:10.1111/j.1365-2516.2012.02768.xDORIA, A. S. (2010). State-of-the-art imaging techniques for the evaluation of haemophilic arthropathy: present and future. Haemophilia, 16, 107-114. doi:10.1111/j.1365-2516.2010.02307.xFALK, B., PORTAL, S., TIKTINSKY, R., WEINSTEIN, Y., CONSTANTINI, N., & MARTINOWITZ, U. (2000). Anaerobic power and muscle strength in young hemophilia patients. Medicine & Science in Sports & Exercise, 52. doi:10.1097/00005768-200001000-00009GALLACH, J. E., QUEROL, F., GONZÁLEZ, L. M., PARDO, A., & AZNAR, J. A. (2008). Posturographic analysis of balance control in patients with haemophilic arthropathy. Haemophilia, 14(2), 329-335. doi:10.1111/j.1365-2516.2007.01613.xGONZÁLEZ, L.-M., QUEROL, F., GALLACH, J. E., GOMIS, M., & AZNAR, V. A. (2007). Force fluctuations during the Maximum Isometric Voluntary Contraction of the quadriceps femoris in haemophilic patients. Haemophilia, 13(1), 65-70. doi:10.1111/j.1365-2516.2006.01354.xHACKER, M. R., FUNK, S. M., & MANCO-JOHNSON, M. J. (2007). The Colorado Haemophilia Paediatric Joint Physical Examination Scale: normal values and interrater reliability. Haemophilia, 13(1), 71-78. doi:10.1111/j.1365-2516.2006.01387.xHilberg, T., Herbsleb, M., Gabriel, H. H. W., Jeschke, D., & Schramm, W. (2001). Proprioception and isometric muscular strength in haemophilic subjects. Haemophilia, 7(6), 582-588. doi:10.1046/j.1365-2516.2001.00563.xHilgartner, M. W. (2002). Current treatment of hemophilic arthropathy. Current Opinion in Pediatrics, 14(1), 46-49. doi:10.1097/00008480-200202000-00008KHAN, U., BOGUE, C., UNGAR, W. J., HILLIARD, P., CARCAO, M., MOINEDDIN, R., & DORIA, A. S. (2009). Cost-effectiveness analysis of different imaging strategies for diagnosis of haemophilic arthropathy. Haemophilia, 16(2), 322-332. doi:10.1111/j.1365-2516.2009.02125.xKURZ, E., HERBSLEB, M., ANDERS, C., PUTA, C., VOLLANDT, R., CZEPA, D., … HILBERG, T. (2011). SEMG activation patterns of thigh muscles during upright standing in haemophilic patients. Haemophilia, 17(4), 669-675. doi:10.1111/j.1365-2516.2010.02466.xLAFEBER, F. P. J. G., MIOSSEC, P., & VALENTINO, L. A. (2008). Physiopathology of haemophilic arthropathy. Haemophilia, 14(s4), 3-9. doi:10.1111/j.1365-2516.2008.01732.xLundin, B., Pettersson, H., & Ljung, R. (2004). A new magnetic resonance imaging scoring method for assessment of haemophilic arthropathy. Haemophilia, 10(4), 383-389. doi:10.1111/j.1365-2516.2004.00902.xMasui, T., Hasegawa, Y., Yamaguchi, J., Kanoh, T., Ishiguro, N., & Suzuki, S. (2006). Increasing postural sway in rural-community-dwelling elderly persons with knee osteoarthritis. Journal of Orthopaedic Science, 11(4), 353-358. doi:10.1007/s00776-006-1034-9Mitchell, S. L., Collin, J. J., De Luca, C. J., Burrows, A., & Lipsitz, L. A. (1995). Open-loop and closed-loop postural control mechanisms in Parkinson’s disease: increased mediolateral activity during quiet standing. Neuroscience Letters, 197(2), 133-136. doi:10.1016/0304-3940(95)11924-lMolho, Rolland, Lebrun, Dirat, Courpied, … Croughs. (2000). Epidemiological survey of the orthopaedic status of severe haemophilia A and B patients in France. Haemophilia, 6(1), 23-32. doi:10.1046/j.1365-2516.2000.00358.xPERGANTOU, H., MATSINOS, G., PAPADOPOULOS, A., PLATOKOUKI, H., & ARONIS, S. (2006). Comparative study of validity of clinical, X-ray and magnetic resonance imaging scores in evaluation and management of haemophilic arthropathy in children. Haemophilia, 12(3), 241-247. doi:10.1111/j.1365-2516.2006.01208.xPIPE, S. W., & VALENTINO, L. A. (2007). Optimizing outcomes for patients with severe haemophilia A. Haemophilia, 13(s4), 1-16. doi:10.1111/j.1365-2516.2007.01552.xPlug, I. (2004). Thirty years of hemophilia treatment in the Netherlands, 1972-2001. Blood, 104(12), 3494-3500. doi:10.1182/blood-2004-05-2008Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Myklebust, B. M. (1996). Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering, 43(9), 956-966. doi:10.1109/10.532130Leslie, R., & Catherine, M. (2007). Modern management of haemophilic arthropathy. British Journal of Haematology, 136(6), 777-787. doi:10.1111/j.1365-2141.2007.06490.xSILVA, M., LUCK, J. V., QUON, D., YOUNG, C. R., CHIN, D. M., EBRAMZADEH, E., & FONG, Y.-J. (2008). Inter- and intra-observer reliability of radiographic scores commonly used for the evaluation of haemophilic arthropathy. Haemophilia, 14(3), 504-512. doi:10.1111/j.1365-2516.2007.01630.xSouza, F. M. B., McLaughlin, P., Pereira, R. P., Minuque, N. P., Mello, M. H. M., Siqueira, C., … Tanaka, C. (2013). The effects of repetitive haemarthrosis on postural balance in children with haemophilia. Haemophilia, 19(4), e212-e217. doi:10.1111/hae.12106TAKEDANI, H., FUJII, T., KOBAYASHI, Y., HAGA, N., TATSUNAMI, S., & FUJII, T. (2010). Inter-observer reliability of three different radiographic scores for adult haemophilia. Haemophilia, 17(1), 134-138. doi:10.1111/j.1365-2516.2010.02389.xTIKTINSKY, R., FALK, B., HEIM, M., & MARTINOVITZ, U. (2002). The effect of resistance training on the frequency of bleeding in haemophilia patients: a pilot study. Haemophilia, 8(1), 22-27. doi:10.1046/j.1365-2516.2002.00575.

    Validating the Comparison Framework for the Finite Dimensions Model of Concentric Ring Electrodes Using Human Electrocardiogram Data

    Full text link
    [EN] While progress has been made in design optimization of concentric ring electrodes maximizing the accuracy of the surface Laplacian estimation, it was based exclusively on the negligible dimensions model of the electrode. Recent proof of concept of the new finite dimensions model that adds the radius of the central disc and the widths of concentric rings to the previously included number of rings and inter-ring distances provides an opportunity for more comprehensive design optimization. In this study, the aforementioned proof of concept was developed into a framework allowing direct comparison of any two concentric ring electrodes of the same size and with the same number of rings. The proposed framework is illustrated on constant and linearly increasing inter-ring distances tripolar concentric ring electrode configurations and validated on electrocardiograms from 20 human volunteers. In particular, ratios of truncation term coefficients between the two electrode configurations were used to demonstrate the similarity between the negligible and the finite dimension models analytically (p = 0.077). Laplacian estimates based on the two models were calculated on electrocardiogram data for emulation of linearly increasing inter-ring distances tripolar concentric ring electrode. The difference between the estimates was not statistically significant (p >> 0.05) which is consistent with the analytic result.This research was funded by the National Science Foundation (NSF) Division of Human Resource Development (HRD) Tribal Colleges and Universities Program (TCUP), grants number 1622481 and 1914787 to Oleksandr Makeyev. The authors would like to thank Rafael Rodriguez de Sanabria for his help with the human ECG data collection and Eduardo Garcia-Breijo for his help with the CRE implementation.Makeyev, O.; Musngi, M.; Moore, L.; Ye Lin, Y.; Prats-Boluda, G.; Garcia-Casado, J. (2019). Validating the Comparison Framework for the Finite Dimensions Model of Concentric Ring Electrodes Using Human Electrocardiogram Data. Applied Sciences. 9(20):1-14. https://doi.org/10.3390/app9204279S114920Bradshaw, L. A., Richards, W. O., & Wikswo, J. P. (2001). Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Medical and Biological Engineering and Computing, 39(1), 35-43. doi:10.1007/bf02345264Besio, W. G., Hongbao Cao, & Peng Zhou. (2008). Application of Tripolar Concentric Electrodes and Prefeature Selection Algorithm for Brain–Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(2), 191-194. doi:10.1109/tnsre.2007.916303Farina, D., & Cescon, C. (2001). Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Transactions on Biomedical Engineering, 48(11), 1326-1334. doi:10.1109/10.959328McFarland, D. J., McCane, L. M., David, S. V., & Wolpaw, J. R. (1997). Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology, 103(3), 386-394. doi:10.1016/s0013-4694(97)00022-2Wu, D., Tsai, H. C., & He, B. (1999). On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering, 27(6), 731-745. doi:10.1114/1.224Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526-530. doi:10.1016/0013-4694(75)90056-5MacKay, D. . (1983). On-line source-density computation with a minimum of electrons. Electroencephalography and Clinical Neurophysiology, 56(6), 696-698. doi:10.1016/0013-4694(83)90040-8Huiskamp, G. (1991). Difference formulas for the surface Laplacian on a triangulated surface. Journal of Computational Physics, 95(2), 477-496. doi:10.1016/0021-9991(91)90286-tBesio, G., Koka, K., Aakula, R., & Weizhong Dai. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926-933. doi:10.1109/tbme.2005.863887Besio, W., Aakula, R., Koka, K., & Dai, W. (2006). Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials. Annals of Biomedical Engineering, 34(3), 426-435. doi:10.1007/s10439-005-9054-8Wang, K., Parekh, U., Pailla, T., Garudadri, H., Gilja, V., & Ng, T. N. (2017). Stretchable Dry Electrodes with Concentric Ring Geometry for Enhancing Spatial Resolution in Electrophysiology. Advanced Healthcare Materials, 6(19), 1700552. doi:10.1002/adhm.201700552Lidón-Roger, J., Prats-Boluda, G., Ye-Lin, Y., Garcia-Casado, J., & Garcia-Breijo, E. (2018). Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology. Sensors, 18(1), 300. doi:10.3390/s18010300Besio, W. G., Martinez-Juarez, I. E., Makeyev, O., Gaitanis, J. N., Blum, A. S., Fisher, R. S., & Medvedev, A. V. (2014). High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes. IEEE Journal of Translational Engineering in Health and Medicine, 2, 1-11. doi:10.1109/jtehm.2014.2332994Boudria, Y., Feltane, A., & Besio, W. (2014). Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography. Journal of Neural Engineering, 11(3), 035014. doi:10.1088/1741-2560/11/3/035014Garcia-Casado, J., Zena-Gimenez, V., Prats-Boluda, G., & Ye-Lin, Y. (2013). Enhancement of Non-Invasive Recording of Electroenterogram by Means of a Flexible Array of Concentric Ring Electrodes. Annals of Biomedical Engineering, 42(3), 651-660. doi:10.1007/s10439-013-0935-yZena-Giménez, V., Garcia-Casado, J., Ye-Lin, Y., Garcia-Breijo, E., & Prats-Boluda, G. (2018). A Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow Waves. Sensors, 18(2), 396. doi:10.3390/s18020396Ye-Lin, Y., Alberola-Rubio, J., Prats-boluda, G., Perales, A., Desantes, D., & Garcia-Casado, J. (2014). Feasibility and Analysis of Bipolar Concentric Recording of Electrohysterogram with Flexible Active Electrode. Annals of Biomedical Engineering, 43(4), 968-976. doi:10.1007/s10439-014-1130-5Prats-Boluda, G., Ye-Lin, Y., Pradas-Novella, F., Garcia-Breijo, E., & Garcia-Casado, J. (2018). Textile Concentric Ring Electrodes: Influence of Position and Electrode Size on Cardiac Activity Monitoring. Journal of Sensors, 2018, 1-9. doi:10.1155/2018/7290867Wang, Y.-C., Chang, C.-F., Lin, H.-C., Lin, K.-S., Lin, K.-T., Hung, C.-M., & Lin, T.-M. (2010). Functional characterisation of a complex mutation in the α(1,4)galactosyltransferase gene in Taiwanese individuals with p phenotype. Transfusion Medicine, 21(2), 84-89. doi:10.1111/j.1365-3148.2010.01055.xMakeyev, O., Ding, Q., & Besio, W. G. (2016). Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes. Measurement, 80, 44-52. doi:10.1016/j.measurement.2015.11.017Makeyev, O., & Besio, W. (2016). Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes. Sensors, 16(6), 858. doi:10.3390/s16060858Makeyev, O. (2018). Solving the general inter-ring distances optimization problem for concentric ring electrodes to improve Laplacian estimation. BioMedical Engineering OnLine, 17(1). doi:10.1186/s12938-018-0549-6Ye-Lin, Y., Bueno-Barrachina, J. M., Prats-boluda, G., Rodriguez de Sanabria, R., & Garcia-Casado, J. (2017). Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement, 97, 195-202. doi:10.1016/j.measurement.2016.11.009Besio, W., & Chen, T. (2007). Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiological Measurement, 28(5), 515-529. doi:10.1088/0967-3334/28/5/006Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157-1165. doi:10.1109/tbme.1986.325695Prats-Boluda, G., Ye-Lin, Y., Bueno-Barrachina, J., Rodriguez de Sanabria, R., & Garcia-Casado, J. (2016). Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position. Measurement Science and Technology, 27(2), 025705. doi:10.1088/0957-0233/27/2/025705Mittal, S., Movsowitz, C., & Steinberg, J. S. (2011). Ambulatory External Electrocardiographic Monitoring. Journal of the American College of Cardiology, 58(17), 1741-1749. doi:10.1016/j.jacc.2011.07.026Garcia-Casado, J., Ye-Lin, Y., Prats-Boluda, G., & Makeyev, O. (2019). Evaluation of Bipolar, Tripolar, and Quadripolar Laplacian Estimates of Electrocardiogram via Concentric Ring Electrodes. Sensors, 19(17), 3780. doi:10.3390/s19173780Xu, Y., Luo, M., Li, T., & Song, G. (2017). ECG Signal De-noising and Baseline Wander Correction Based on CEEMDAN and Wavelet Threshold. Sensors, 17(12), 2754. doi:10.3390/s17122754Ortigueira, M. D., Laleg-Kirati, T.-M., & Machado, J. A. T. (2014). Riesz potential versus fractional Laplacian. Journal of Statistical Mechanics: Theory and Experiment, 2014(9), P09032. doi:10.1088/1742-5468/2014/09/p0903
    corecore